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can be either increased or decreased by simultaneous dif- 
fraction, and the extreme values are given in Table 1. For 
every multibeam case, a particular azimuth ~00 is computed 
corresponding to a situation in which one or two reciprocal 
lattice nodes lie on the Ewald sphere. When the actual 
azimuth ~0 differs from (Do by more than A~o/2 as given in 
Table 1, the 002 integrated intensity is practically restored 
to the two-beam value. 

Table 1 shows that these effects are by no means negli- 
gible, especially in the case of the T31. However, the azi- 
muthal width for the ]'31 (14 sec) must be compared with 
the vertical divergence, i.e. perpendicular to the diffraction 
plane, of the incident beam in Borgonovi & Caglioti's ex- 
periment. This vertical divergence amounts to 76 minutes, 
as calculated from a description of the experimental set up 
given by Caglioti & Ricci (1962). It is clear, therefore, that 
only a negligible fraction of the incident beam satisfies the 
conditions for multiple diffraction. The remaining portion 

undergoes two-beam 002 diffraction and is totally collected 
by the counter. The net effect turns out to be of the order 
of 1.7 % which is within the limits of the experimental error. 

Thanks are due to Professor B. W. Batterman and to the 
U.S. Advanced Research Projects Agency for partial sup- 
port of this work. 
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The equation for the absorption factor at Bragg angles of 0 and 90 ° is integrable, resulting in simple equa- 
tions that are functions of well-known higher transcendental functions. Numerical results are easily obtained, 
and a comparison with those obtained using numerical integration is made. 

For  small-angle scattering studies of cylindrical samples, it 
is useful to calculate the absorption factor at zero Bragg 
angle directly, in a manner that does not require a large 
amount  of computer storage. Also, direct calculations at 
Bragg angles of 0 and 90 ° allow checks to be made on ab- 
sorption factors calculated by numerical integration. 

The general equation for the transmission factor A that 
is the reciprocal of the absorption factor A* is 

1 f, 
A=---~ e x p ( - g t L ) d V ,  (1) 

where V is the sample volume, /t is the linear absorption 
coefficient, and L is the total path length of the X-ray beam 
in the sample. 

After introducing boundary conditions for the sample 
shape, transformation of coordinates, and integration by 
parts, definite integrals, for which solutions are well known, 
were obtained from equation (1) for Bragg angles of 0 and 
90 ° . The equations for the transmission factors for these 
two special cases are" 

A=2[12{z)-L2{z)+(Ii{z)-L~{z})/z-(Zz)/(3~)] ( 0 = 0  °) (2) 

= 2[(lo{z)-Lo{z))-(I~(z}-L~{z})/z], 

A=[l~(Zz}-L~(2z}]/z, (0=90  ° ) (3) 

where z = 2/tR, R is the radius of the cylinder, and Iv and Lv 
are the modified Bessel function and the modified Struve 

function respectively of order v (Erd61yi, Magnus, Ober- 
hettinger & Tricomi, 1953).t 

The numerical values of Iv and Lv can be obtained using 
series solutions only slightly more complicated than those 
for the simple transcendental ftmctions, such as the sine. 
Because series solutions are simple to evaluate on a com- 
puter, it is quite simple to solve for the absorption correc- 
tion directly for the two special cases. 

For  large values of the arguments of the modified Bessel 
and Struve functions, these functions become very large, 

? Proofs of equations (2) and (3) are available from the 
author. 

Table 1. Values of  A* 

0 = 0 ° 0 = 90 ° 
/tR A* % Error~: A* % Error 
0.5 2-300 0.43 2.050 0.01 
1.0 5.091 0.61 3.389 0.04 
1.5 10.75 0.45 4.863 0.15 
2.0 21.44 0.63 6-389 0.17 
2.5 40-10 0.74 7"936 0.30 
3-0 70-12 0.88 9.492 0.40 
4.0 177.0 1.11 12.62 0.66 
5.0 363.0 1.11 15.75 0.97 

Percent error in A* values in International Tables for X-ray 
Crystallography (1959) when compared with A* values given 
in this table. 
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and many significant figures are lost when they are combined 
as indicated in equations (2) and (3). Thus, a double-preci- 
sion computer program should be used, and n should in- 
clude the maximum allowed number of significant figures. 
For a computer allowing a maximum of 16 significant 
figures, /zR may be as high as 5, if a precision of at least 
four significant figures is desired in A*. 

Values of the absorption factor are given in Table I, and 
these values are compared with those in International Tables 
for X-ray Crystallography (1959), that were obtained by 
numerical integration. Agreement is good at lower values 
of/zR, but a small amount of error becomes apparent in the 
values obtained by numerical integration at higher values 
of/zR. 

Values of the absorption factor at higher values of pR 
could be calculated using asymptotic expressions for Iv-L.  
This was not done because the values of pR used were of 
sufficient range for most purposes. If a very large value of 
pR is encountered, it is best either to reduce the radius of 
the sample or to use shorter wavelength radiation to reduce 
/zR, because the change of the absorption factor with scatter- 

ing angle becomes huge near 0 ° for large #R, and only 
small deviations of the sample shape from that used for the 
calculations can produce large errors. 

Also, secondary scattering is likely to be quite important 
for large values of pR when the sample is noncrystalline. 

Equations (2) and (3) can be solved at several values of z 
without a computer, using values of Iv-Lv given in the 
Handbook oJ Mathematical Functions (1964). Interpolation 
between values obtained will give results of sufficient accu- 
racy for most purposes. 
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Out-of-zone effects in dynamic electron diffraction intensites from gold. Erratum. By D. F. LYNCH, Division 
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Corrected labelling is given for Fig. 11 in Acta Cryst. (1971) A27, 399. 

In Fig. 11 of the article by Lynch (1971) the labelling of the 
four parts was printed incorrectly. The letters (a), (b), (c), Reference 
(d) should be (d), (c), (b), (a) respectively, reading from top 
to bottom of the diagram. LYNCH, D. F. (1971). Acta Cryst. A27, 399. 
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T h e  m e a n  f igu re -o f -mer i t  fo r  a difference Fourier synthesis. By EATON E. LATTMAN, Department of Biophysics, 
Johns Hopkins University, Baltimore, Maryland 21218, U.S.A. 

(Received 9 July 1971) 

The conventional difference Fourier synthesis has a mean figure-of-merit of (2/re) times that of the native 
structure, and has coefficients which arecorrectly weighted for the 'best' synthesis of Blow & Crick [Acta Cryst. 
(1959) 12, 794]. 

Workers in protein structure analysis commonly use dif- 
ference Fourier syntheses with coefficients: 

mpF D = m~,(FH -- F~,) exp (i~0p). (1) 

Here, Fp and ~0~, are the amplitude and phase of a structure 
factor of the native crystal, and Fn is the amplitude of the 
same structure factor of a slightly modified crystal. The 
figure-of-merit mp is discussed later on. Typically, these 
syntheses are used not for refinement but to reveal the 
details of small additions or alterations to the native struc- 
ture. It may then be useful to calculate the accuracy of such 

difference syntheses in the same framework used for as- 
sessing conventional protein structure determinations. 

Blow & Crick (1959) show that, in a least-squares sense, 
the 'best' Fourier synthesis has coefficients in which the 
observed amplitudes are weighted by a figure-of-merit that 
is given approximately by the cosine of the expected error 
in the phase angle. The quantity me in equation (1) is, there- 
fore, the cosine of the error in (pp. 

Fig. 1 shows the structure factors Fp and F n ,  as well as 
the correct difference structure factor fD to which F D is 
an approximation. The phase error in the coefficient 


